Franklin Square Hospital Center Patient Tower Baltimore, MD

Technical Report 1

Structural Concepts / Structural Existing Conditions Report

Thomas Weaver

Structural Option

AE 481W Senior Thesis

Consultant: Professor M. Kevin Parfitt 11/16/2009

Table of Contents:

Executive Summary	3
Structural Systems	4
Foundation System	4
Floor System	
Columns	10
Roof System	11
Wall System	11
Lateral System	
Codes and Design Standards	
Material Specifications	
Gravity and Lateral Loads	
Live and Dead Loads	
Snow Loads	
Wind Loads	
Seismic Loads	
Spot Checks	
Slab and Beam Moment Checks	
Slab and Beam Shear Checks	
Column Axial Checks	
Elements Needing Future Checks	
Appendix A Typical Floor Plans	
Appendix B: Snow Load Calculations	
Appendix C: Wind Load Calculations	32
Appendix D: Seismic Load Calculations	35
Appendix E: Spot Check Calculations	42

Executive Summary:

The intent of this report is to analyze the existing structural conditions for the Franklin Square Hospital Center Patient Tower in Baltimore, MD. As a 7 story tower addition, the structure is subject to higher constraints than found in most buildings. It is subject to much higher loading from the numerous mechanical, electrical, telecommunication and distribution systems found only in hospitals. The following technical report describes the structural concepts and existing condition of the Franklin Square Hospital Center Patient Tower including information relative to design concepts and required loading. Three objectives were met with this technical report:

- Become familiar with the buildings structural design and understand how the gravity and lateral systems were designed and function together.
- Calculate the snow, wind, and seismic loads and understand how they affect the structure.
- Provide spot checks on gravity load supporting members for the comparison of methods or analysis used by the designers.

The report begins with a detailed introduction to the main structural systems including foundation, floor system, columns, roof system, wall system and lateral system. Details and sections are copied from the plans to help explain the systems along with written descriptions.

The snow load analysis followed ASCE 7-05 and produced roof snow loads of 30 psf. A snow drift analysis was also conducted finding drift loads as high as 90 psf on some portions of the roof. Wind analysis also followed ASCE 7-05. Windward wind pressures were found to range from 7 psf on the lower floors to 13.5 psf on the upper floors. Leeward wind pressures were calculated close to 8 psf. Seismic analysis once again followed ASCE 7-05 and produced a base shear of 891 kips.

Spot checks were conducted on a portion of the building that was fairly regular and typical throughout the plan. The flat plate floor system was found to be adequately designed at all critical section except two. The reason behind these differences stems from the method of analysis used for calculating critical moments. This report used the direct design method while the designer likely used a more advanced and more accurate method. Columns were checked for pure axial strength at both the fourth floor and ground floor and found to be adequate.

Other important parameters such as gravity loading, codes used, and material strength are addressed throughout this report. Complete hand calculations are also included in the Appendix.

Structural Systems

Foundation System

The foundation system of the Franklin Square Hospital Patient Tower consists of drilled piers or caissons 4 feet in diameter and centered under columns or slightly offset under perimeter grade beams. The piers range in size from 1.5 feet in diameter to 5 feet in diameter. They are embedded a minimum of 20 feet into bedrock. The total typical depth of the piers is around 42 feet below grade pending geotechnical engineer inspection. See Figure 1, "Drilled Pier Reinforcing."

Figure 1: Drilled Pier Reinforcing

The piers are required to be a normal weight concrete with a concrete compressive strength (f'_c) of 3000 psi. As previously mention, the piers directly support interior columns. See Figure 2, "Column Caisson Connection and Column Reinforcing."

Figure 2: Typical Column Caisson Connection and Column Reinforcing

The piers also directly support perimeter grade beams. The typical grade beam is 24"x24" with some that are 36"x24". See Figure 3, "Typical Grade Beam Caisson Connection."

Figure 3: Typical Grade Beam Caisson Connection

While there are no sub grade levels in the structure, the west side of the ground floor can be considered below grade because the ground has been filled to provide on grade access to the first floor lobby. The existing hospital ground floor also resides on the level corresponding to the patient tower's first floor. Lateral soil pressures from the foundation of the existing building are resisted by a 16" thick foundation wall in these areas. See Figure 4, "Typical Foundation Wall Section."

Figure 4: Typical Foundation Wall Section

The rest of the foundation consists of a 5 inch ground floor slab on grade of compressive strength equal to 3000 psi. The slab on grade is reinforced with 6x6-W2.9xW2.9 welded wire fabric over a 4 inch layer of clean, well-graded gravel or crushed stone.

Floor System

The buildings typical floor system is a 10" reinforced two way slab, or flat plate, spanning a typical 30'x30' bay. The reinforcing varies a great deal depending on location and span but for the most part there is a continuous bottom mat of #5 or #6 bars at 12" each way with continuous top reinforcing within the column strips with mostly #6 or #8 bars. See Appendix A for Floor Plans and Figure 5, "Slab Reinforcing Detail."

Figure 5: Slab Reinforcing Detail

The floor system also consists of edge beams that wrap the perimeter of the slab and surround openings such as stairs, elevators, and mechanical shafts. The typical edge beam is 21"x28" reinforced with #9 bars top and bottom. See Figure 6, "Portion of Concrete Beam Schedule."

									STIRRUPS		
	SI			pc.			71114013		REMARKS		
MARK	(INCHÉS)	D (INCHES)	BARS	LE	FL	RE	SIZE	TYPE	SPACING (INCHES)	END	
ВІ	21	28	3#9	п	2#9		#4	52	102, 12012, R018	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
B2	12	28	3 #9	-	3#9	-	#4	52	102, R010	EE	
ВЗ	10	28	3 #8	-	3#8	-	#4	52	le2, Rel2	EE	
B4	26	20	3 #9	*	3#9	-	#4	53	102, R08 CANT. 102, R08	EE	
B5	21	28	2#9	-	2#9	-	#4	52	I@2, R@I2	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
В6	21	28	4#9	Ψ.	3#9	2	#4	52	I@2, R@8	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
B7	21	28	3#9	1#9	2#9	#q	#4	52	102, 1808, R012	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
B8	21	28	3#9	_	2#9	3#9	#4	52	le2, l6el2, Rel8	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
B9	26	20	3#9	3#9	2#9	3#9	#4	53	102, 2008, Rel8	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
BIO	22	20	4#9	5#10	2#10	5#10	#4	53	102, 1204, R06	EE	
BII	26	20	3#9	3#9	2#9	3#9	#4	53	102, 2008, Rel8	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
BI2	21	28	3#9	2#9	2#9	2#9	#4	52	le2, l4e12, Rel8	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
BIS	26	20	5#9	5#9	-	7#10	#4	53	102, 1204, Re8	EE	711 100 000 11
BI4	20	20	3#4	6#9	-	6#9	#4	53	le2, Re6	EE	
BI5	12	28	3#9	1#9	2#9	1#9	#4	52	102, 608, R012 CANT. 102, R08	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
BI6	20	20	2#9	-	2#9	-	#4	52	102, 608, R012	EE	AT PILO DEL TI
BIT	12	20	2#9	3#9	_	3#9	#4	52	102, 1606, Rel2	EE	Harris Hall Control of the Control o
BIS	22	24	4#9	1#9	2#9	#9	#4	52	1@2, 15@10, R@18	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
BIG	22	24	4#9	-	2#9	-	#4	52	le2, I5eIO, ReI8	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
B20	22	24	3#9	-	2#9	-	#4	52	102, 5010, R018	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
B2I	-21	28	3#9	#9	2#9	1#9	#4	52	le2, l2el2, Rel8	EE	PROVIDE 2 #9 WEB BARS AT MID-DEPTH
B22	21	28	5#9	-	2#9	-	#4	52	le2, Rel0	EE	PROVIDE 2 #9 WEB BARS
B23	21	16	2#9	-	2#9	[#q	#4	52	102, 1606, R012	EE	AT PID-DEFTI
B24	21	28	5#9	2#9	2#9	2#9	-	52	I@2, R@I2	EE	-
B25	30	28	3#9	4#9	4#9	-	#4	53	le2, I2eI2, ReI8	EE	PROVIDE 2 #9 WEB BARS
B26	21	28	5#4		2#9		#4	52	I@2, IO@6, R@8	EE	AT MID-DEPTH PROVIDE 2 #9 WEB BARS
B27	21	28	3#9	2#9			#4	52	le2, l0e6, Rel2	EE	AT MID-DEPTH PROVIDE 2 #9 WEB BARS
B28	21	28	2#9	-	2#9			52	I@2, R@8	EE	PROVIDE 2 #9 WEB BARS
B29	21	28	5#9	1#9	2#9			52	192, 1296, R910	EE	PROVIDE 2 #9 WEB BARS
122	7615	28	3#9	5#9	2#9	10-1	#4	52	102, 1604, Re12	EE	PROVIDE 2 #9 WEB BARS
B30	21	7.4140	3#9	- D#Y	2#9	5#9		52	192, 1694, Re12	EE	AT MID-DEPTH PROVIDE 2 #9 WEB BARS
B31	21	28		-				-	192, 1094, Re12	EE	AT MID-DEPTH PROVIDE 2 #9 WEB BARS
B32	21	28	5#9	2#9	-	2#9		52	192, 1096, R912	EE	AT MID-DEPTH

Figure 6: Portion of Concrete Beam Schedule

Columns

The columns are for the most part 21"x21" and 22"x22 with (8) #9 bars. Instead of changing column sizes as the building rises, the engineers specified different concrete compressive strengths for different levels and reduced the reinforcing to (8) #8's in spots. The ground to 3rd floor columns have a 28 day compressive strength of 7000 psi and the columns from the 3rd floor to the roof have a 28 day compressive strength of 5000 psi.

Portions of the penthouse are supported by steel columns. For continuity and moment resisting strength, these steel columns are embedded in the full length of the concrete columns from the floor below. This results in steel columns that are 2 levels tall and fully integrated in the moment frame of the rest of the building.

The portion of the tower that does not rise past the ground floor has oversized columns designed for future expansion. The Franklin Square Hospital Center Patient Tower was realized because the existing hospital had no capacity left for additional floors. Desperately needing space, the hospital commissioned the Patient Tower and supporting spaces. In the future when such a situation arises, the new Patient tower will be able to grow with the needs of the hospital. See Figure 3, "Typical Column Caisson Connection and Column Reinforcing" and see Figure 7, "Portion of Concrete Column Schedule."

			V 2	J-7, J-8			M-4, M-5	N-12	N-6	P-3	M-I2	J-9, L-6	F-4, F-5	6-4, 6-5
	COLUMN	L-I M3-I	K-2 L-2	K-7, K-8	M-3 N-3	M-6 M-7	M-4, M-5 M-10, M-11	N-12 P-6	N-7, N-8	P-3	M-12	K-9, L-9	F-6, F-10	6-6, 6-10
		P-I	K-I2.4	L-7, L-8	11.5	M-8	N-4, N-5		N-9, N-10	P-5		H-6, J-6	F-II	6-11
LEVEL			L-12.4			M-9			N-II			K-6		
	SIZE VERTICAL BARS	/	/	/	/	/	/	/	/	/		/	/	/
	TIES	X	X	X	X	X	X	X	X	X	X	X	X	X
PENTHOUSE ROOF	REMARKS													
	SIZE		30xl2		/	/		/	\wedge	/	1	\wedge		1
	VERTICAL BARS TIES	X	6#8	X	X	\times	X	X	X	X	X	X	X	X
MAIN ROOF/ SEVENTH FLOOR	REMARKS	/ \									//			//
DEVENTITIES	SIZE		30xl2	1		1		1		1	1	2 x2	22x22	22x22
	VERTICAL BARS		6#8									8#9	8#9	8#9
Charles on	TIES													
SIXTH FLOOR	REMARKS SIZE	$\langle \cdot \rangle$	00.10				100					01.01	22x22	22x22
	VERTICAL BARS	//	30xl2 6#8	1.5							1.3%	2 x2 8#9	8#q	22X22 8#9
	TIES	X	0110	z	z	z	z	z	z	z	z	011	0-1	0-1
FIFTH FLOOR	REMARKS			0	0	0	0	0	0	0	0			
	SIZE VERTICAL BARS	/	30x12	A N S	S S	S S	Z	S N	N O	2	Z	2 x2	22x22	22x22
	TIES	X	6#8	D_	0.	4 □	4 0.	0_	₽	4 0.	0.	8#9	8#9	8#9
FOURTH FLOOR	REMARKS			ж ш	×	ж	ш ×	m ×	ш ×	m ×	ш ×			
	SIZE		30xl2	ш	ш	ш	ш	ш	ш	ш	ш	2lx2l	22x22	22x22
	VERTICAL BARS		6#8	F ⊃	⇒ ⊠	⊃ ⊠	2 2	⇒ ⊠	F ⊠	⇒ 8X	→ N	8#9	8#q	8#9
THIRD FLOOR	TIES REMARKS			2	5	크	5	문	5	2	2			
IIII T LOOK	SIZE	$\langle \cdot \rangle$	30xl2	-								2 x2	22x22	22x22
	VERTICAL BARS	//	6#IO									8#9	8#9	8#9
	TIES								-					3
SECOND FLOOR	REMARKS				-							-		
	SIZE	/	30x12									2lx2l	22x22	22x22
	VERTICAL BARS	X	6#10									8#9	8#9	8#9
FIRST FLOOR	REMARKS		30											
	SIZE	2lx2l	30xl2	22x22	22x22	22x22	22x22	2lx2l	2lx2l	2 x2	2 x2	2 x2	22x22	22x22
	VERTICAL BARS	12#10	6#10	8#10	8#10	8#9	8#10	8#11	8#11	8#11	8#10	8#9	8#9	8#9
GROUND FLOOR	TIES	4#8		4#8	4#8	4#8	4#8	4#8	4#8	4#8	4#8			
	REMARKS	,												
DOWEL5		12#7	6#7	8#8	8#8	8#8	8#8	8#8	8#8	8#8	8#8	8#1	8#7	8#7

Figure 7: Portion of Concrete Column Schedule

Roof System

The main roof system consists of cambered steel beams ranging from W12x14 to W21x73 and 1.5" deep, wide rib, 20 gauge galvanized metal deck with 3 ¼" lightweight concrete. Many of these beams are moment connected to the steel columns supporting them. A center portion of the roof contains a 10" reinforced concrete slab with concrete columns extending 2' above the surface for future placement of the helipad deck. See <u>Appendix A</u> for "Roof Framing Plan."

Wall System

The exterior façade is for the most part 7" precast concrete panels. Loads bearing connections occur at each level, with two per panel. The connections permit horizontal movement parallel to the panel except for a single non-load bearing connection which is fixed. Precast panel loads are supported only by the columns.

Lateral System

The Franklin Square Hospital Center Patient Tower utilizes the entire structure to resist lateral forces. Every column, slab and beam acts as an ordinary reinforced concrete moment frame resisting forces in both the North-South direction and the East-West direction. The large moments are carried down the building through the columns and directly into the drilled piers. The piers, with depths of 42 feet, are quite substantial and help greatly to give the building a rigid, fixed base.

In the case of wind, the force exerted on the precast panels is directly transferred to the columns and not the floor diaphragm. Once this occurs, the force is carried down the column and across the floor diaphragm to the remaining columns. The columns are expected to resist the lateral force through their moment capacity. The perimeter edge beams are stiffer than the diaphragm and are therefore expected to function as more efficient moment frames.

Codes and Design Standards

General Codes and Standards

- "International Building Code 2006", International Code Council with Baltimore County Amendments
- "Minimum Design Loads for Buildings and Other Structures, ASCE 7-05", American Society of Civil Engineers

Concrete

- "Building Code Requirements for Reinforced Concrete, ACI 318", American Concrete Institute
- "ACI Manual of Concrete Practice Parts 1 through 5"
- "Manual of Standard Practice", Concrete Reinforcing Steel Institute
- "PCI Design Handbook Precast and Prestressed Concrete", Prestressed Concrete Institute

Structural Steel

- "Manual of Steel Construction Allowable Stress Design", Ninth Edition
- "Manual of Steel construction Load and resistance Factor Design", Third Edition
- "Manual of Steel Construction, Volume II Connection", ASD 9th Edition/LRFD 3rd Edition
- "Detailing for Steel construction", American Institute of Steel Construction
- "Structural Welding Code ANSI/AWS D1.1, American Welding Society

Steel Deck

• "Design Manual Floor Decks and Roof Decks", Steel Deck Institute

Material Specification

Concrete

Application	f'c @ 28 days	Weight (PCF)
Slabs-On-Grade (Interior)	3000	145
Slabs-On-Grade (Exterior)	3500	145
Reinforced Slabs	5000	145
Reinforced Beams	5000	145
Fill on Metal Deck	4000	110
Columns (Ground to 3 rd Floor)	7000	145
Columns (3 rd Floor to Roof)	5000	145
Walls	4000	145
Grade Beams	3000	145
Footings	3000	145
Caissons	3000	145
Topping	3000	145

Structural Steel

Application	
Deformed Reinforcing Bars	ASTM A615, Grade 60
Rolled Shapes	ASTM A992, Grade 50
Channels, Angles and Plates	ASTM A36
Structural Pipe	ASTM A53, Grade B, F _y = 35 ksi
Round HSS Shapes	ASTM A500, Grade B, F _y = 42 ksi
Structural Tubing (Square and Rectangular HSS)	ASTM A500, Grade B, F _y = 46 ksi
High Strength Bolts	ASTM A325-N typical
Anchor Rods	ASTM F1554 Grade 36
Smooth & Threaded Rod	ASTM A36
Headed Shear Studs	ASTM A108
Welding Electrodes	AWS A5.1 OR A5.5, E70XX
Galvanized Metal Deck	ASTM A653
Painted Phosphated Metal Floor Deck	ASTM A611

Gravity and Lateral Loads

Live and Dead Loads

Live Loads (LL)							
Area	ASCE 7-05 Load	Design Load					
Patient Rooms	40 PSF	40 PSF					
Lobbies and 1 st Floor Corridors	100 PSF	100 PSF					
Corridors above 1 st Floor	80 PSF	80 PSF					
Stairs and Exits	100 PSF	100 PSF					
Mechanical	-	As Noted On Plans					
Partitions	20 PSF	20 PSF					
Roof	20 PSF	30 PSF Minimum					
		(Snow Load is used when					
		greater than 30 PSF)					

Dead Loads (DL)								
Material	ASCE 7-05 Load	Design Load						
Superimposed	-	20 PSF						
Normal Weight Concrete	-	145 PCF						
Lightweight Concrete		110 PCF						
Concrete on Metal Deck	-	63 PSF						
Precast Façade	-	85 PSF						
Curtain Wall	-	3 PSF						

Snow Loads

The snow loads were determined based on Chapter 7 of ASCE 7-05. The ground snow load for the Baltimore area was found using the maps in ASCE 7 and was determined as 30 PSF. All assumptions regarding exposure, thermal factor, and importance factor match the designer's. Snow drift calculations follow ASCE 7's guidelines regarding leeward and windward drift heights. Table 2 shows the excel spreadsheet constructed to aid in the calculation of these drifts and Figure 8 shows the snow drift plan. See Appendix B for hand calculations.

<u>Conclusion:</u> The flat roof snow load came to 25.2 PSF but was rounded to 30 PSF for convenience. This will not impact loading of the structure because a minimum roof live load of 30 PSF is applied anywhere snow drifts do not accumulate. Compared to dead and live loads, the impact of snow is minimal to the structure except where drifts occur.

Table 1: Basic Snow Load Parameters					
Exposure Category C	C _e = 1.0				
Thermal Factor	C _t = 1.0				
Importance Factor (I)	I = 1.2				
Ground Snow Load	P _g = 30 PSF				
Flat Roof Snow Load	P _f = 25.2				
Flat Roof Snow Load Used	30 PSF				

Table 2: Snow Drift Example			
p _g (psf) =	30		
p _f (psf) =	25.2		
g (pcf) =	17.9		
h _b =	1.407821		
diff in roof height = h _c +h _b =	75		
h _c =	73.59218		
Leeward Drifts			
L upper roof =	41.5		
h _d =	2.243974		
Windward Drifts			
L lower roof =	81		
h _d =	2.009186		
Controlling h _d =	2.243974		
w=	8.975896		
w _{acutal} =	8.975896		
$h_d + h_b =$	3.651795		
max psf =	90.56713		
min psf =	25.2		

Figure 8: Snow Drift

Wind Loads

The wind loads were determined based on Chapter 6 of ASCE 7-05. Method 2: Analytical Procedure was used to determine loads for the main wind-force resisting system. The height of the building was taken as the top of the penthouse roof. While the penthouse covers a slightly smaller area than the floor below, the full width of the building at the seventh floor was taken as the building width and length in the calculations except where noted such as calculating story force and story shear. During the calculation of the gust factors, an assumption was made concerning the damping coefficient of the building and 1.5% was assumed after reading commentary C in ASCE 7-05 relating to damping coefficient ranges for common building types. Table 4 summarizes assumptions concerning wind directionality, exposure, and topographical influences. Table 5 summarizes Gust factors in both directions. Tables 6 and 7 summarize design wind pressures in both directions while Tables 8 and 9 summarize design wind forces in both directions. For wind pressure diagrams, see Figure 9, "N-S Wind Pressure Diagram" and Figure 10, "E-W Wind Pressure Diagram." See <u>Appendix C</u> for hand calculations.

<u>Conclusion:</u> The wind analysis below obtained a base shear force of 437.4 kips for wind in the North-South direction and 518.6 kips in the East-West direction. These two values are expected to be similar as the building sits on a rather square footprint.

Table 4: Basic Wind Pressure Parameters							
Basic Wind Speed (MPH)	90						
Wind Directionality Factor (K _d)	0.85						
Importance Factor (I)	1.15						
Exposure Category	В						
Topographic Factor (K _{zt})	1						
Building Height	106 ft						
N-S Building Length	260 ft						
E-W Building Length	225 ft						
L/B in N-S Direction	1.156						
L/B in E-W Direction	0.865						

Table 5: C _p , Gust Factors, GC _{pi} Factors									
Wind Direction	C _p (Windward)	Gust Factor	GC_pi						
N-S	0.8	-0.47	-0.7	0.833	±0.18				
E-W	0.8	-0.5	-0.7	0.825	±0.18				

Table 6: Design Wind Pressures in the N-S Direction									
Location	Height above ground level, z (ft)	k _z	q (psf)	External pressure qGC _p (psf)	Internal pressure q _h (GC _{pi}) (psf)				
	106	1.005	20.370787	13.575093	±3.67				
	87	0.951	19.276237	12.845685	±3.67				
	74	0.906	18.364113	12.237845	±3.67				
Windward	62	0.858	17.39118	11.589482	±3.67				
vviiiuwaiu	50	0.81	16.418246	10.941119	±3.67				
	38	0.748	15.161541	10.103651	±3.67				
	26	0.668	13.539986	9.0230466	±3.73				
	14	0.532	10.783342	7.1860192	±3.67				
Leeward	All	1.005	20.370787	-7.975367	±3.67				
Side	All	1.005	20.370787	-11.87821	±3.67				

Table 7: Design Wind Pressures in the E-W Direction								
Location	Height above ground level, z (ft)	k _z	q (psf)	External pressure qGC _p (psf)	Internal pressure q _h (GC _{pi}) (psf)			
	106	1.005	20.370787	13.44472	±3.67			
	87	0.951	19.276237	12.722317	±3.67			
	74	0.906	18.364113	12.120314	±3.67			
Windward	62	0.858	17.39118	11.478178	±3.67			
vviiiuwaiu	50	0.81	16.418246	10.836043	±3.67			
	38	0.748	15.161541	10.006617	±3.67			
	26	0.668	13.539986	8.9363907	±3.73			
	14	0.532	10.783342	7.1170058	±3.67			
Leeward	All	1.005	20.370787	-8.40295	±3.67			
Side	All	1.005	20.370787	-11.76413	±3.67			

Table 8:	le 8: Design Wind Forces in the N-S Direction									
Level	Height (ft)	Tributary Height (ft)	Tributary Width (ft)	Windward (psf)	Leeward (psf)	Total (psf)	Story Force (kips)	Story Shear (kips)	Overturning Moment (ft-kips)	
Roof										
(8)	106	10	165	13.58	-7.98	21.55	35.6	35.6	3769	
7	87	15.5	225	12.85	-7.98	20.82	72.6	108.2	9411	
6	74	12.5	225	12.24	-7.98	20.21	56.8	165.0	12212	
5	62	12	225	11.59	-7.98	19.56	52.8	217.8	13506	
4	50	12	225	10.94	-7.98	18.92	51.1	268.9	13446	
3	38	12	225	10.10	-7.98	18.08	48.8	317.7	12074	
2	26	12	225	9.02	-7.98	17.00	45.9	363.6	9454	
1	14	13	225	7.19	-7.98	15.16	44.3	408.0	5712	
Ground	0	7	277	7.19	-7.98	15.16	29.4	437.4	0	
Total							437 k		79,584 ftk	

Table 9:	ble 9: Design Wind Forces in the E-W Direction									
Level	Height (ft)	Tributary Height (ft)	Tributary Width (ft)	Windward (psf)	Leeward (psf)	Total (psf)	Story Force (kips)	Story Shear (kips)	Overturning Moment (ft-kips)	
Roof										
(8)	106	10	240	13.44	-8.40	21.85	52.4	52.4	5558	
7	87	15.5	260	12.72	-8.40	21.13	85.1	137.6	11969	
6	74	12.5	260	12.12	-8.40	20.52	66.7	204.3	15116	
5	62	12	260	11.48	-8.40	19.88	62.0	266.3	16511	
4	50	12	260	10.84	-8.40	19.24	60.0	326.3	16316	
3	38	12	260	10.01	-8.40	18.41	57.4	383.8	14583	
2	26	12	260	8.94	-8.40	17.34	54.1	437.9	11384	
1	14	13	260	7.12	-8.40	15.52	52.5	490.3	6864	
Ground	0	7	260	7.12	-8.40	15.52	28.2	518.6	0	
Total							518 k		98,301 ftk	

Figure 9: N-S Wind Pressure Diagram

Figure 10: E-W Wind Pressure Diagram

Seismic Loads

While it may not seem to be important given its local, seismic analysis was an import consideration in the design of the Franklin Square Hospital Center. Loads were determined based on Chapter 8 of ASCE 7-05 and the Equivalent Lateral Force Procedure was used. The spectral response coefficients were determined from the USGS Earthquake Hazard Program providing higher accuracy than the map in ASCE7 can. Table 10 details the basic seismic Parameters. Table 11 details the seismic load at each level and the overturning moment at the base. Table 12 shows the components that contribute to building weight. Figure 11 shows the seismic load diagram on the building's elevation. More tables showing each component of building weight are available in <u>Appendix D</u> along with seismic hand calculations.

Conclusion: As calculated in this report, the seismic response coefficient is 0.016 while the designer used 0.0825. The seismic response coefficient used by the designers was based on the actual period of the structure as calculated from a building model while the calculation in this report follows the code. A reasonable conclusion would ascertain these differences stem from the codes use of trying to estimate a fictitious value. While this method can be useful, a direct building model study is far more accurate. What is more interesting is even with the large differences in seismic response coefficients, the design base shear is still close, 891k vs. 805k from the designer. This means that the building weight as calculated in this report, 55,713 k, is quite different than what the designers obtained which can be approximated as close to 10,000k. As shown in Table 13, the largest contributor to building weight is slab weight and errors in slab weight could have a big effect. The weight of the floor slabs was based on the plan dimensions of the drawings and while the drawings show large openings in the slab, smaller openings and depressions were not considered in the calculation. It could be possible the number of small openings and depressions is large enough to bring the slab weight down to match the designer's.

Table 10: Basic Seismic Parameters				
Spectral Response Coeff. S _s	0.176			
Spectral Response Coeff. S ₁	0.051			
Soil Site Class	С			
Seismic Design Category	Α			
Response Modification Factor	3			
Importance Factor	1.5			
Seismic Response Coeff. Cs	0.016			
Total Building Weight	55,713 k			
Design Base Shear	891 k			

Table 11: Seismic Load								
Level	Height, h _x (ft)	Story Weight, w _x (kips)	w _x h _x ^k	w _x h _x ^k / ∑w _i h _i ^k	Lateral Force (kips)	Story Shear (kips)	Overturning Moment (ft-k)	
Roof	105	2221	2280488	0.112	100	100	10451	
Penthouse	87	6485	5032389	0.246	220	319	27769	
Level 6	74	6955	4241148	0.208	185	504	37318	
Level 5	62	6881	3223504	0.158	141	645	39990	
Level 4	50	7092	2411323	0.118	105	750	37512	
Level 3	38	7617	1720432	0.084	75	825	31363	
Level 2	26	7438	954480	0.047	42	867	22542	
Level 1	14	10966	559451	0.027	24	891	12480	
Ground	0	59	0	0	0	891	0	
Total					891 k		219,424 ftk	

Table 12: Total Building Weight Calculation (kips unless otherwise noted)								
Level	Floor (Conc. Slab + Conc. on Metal Deck)	Beams (Conc. + Steel)	Columns (Conc. + Steel)	Façade	Curtain Wall	Superimposed Dead	Partitions	Total
Roof	1882	216	-	123	-	-	-	2221
Penthouse	5129	451	68	314	14	509	-	6485
Level 6	4274	507	78	663	18	707	707.46	6955
Level 5	4274	505	32	636	18	707	707.46	6881
Level 4	4456	534	32	636	18	707	707.46	7092
Level 3	4827	579	32	636	18	762	761.92	7617
Level 2	4665	539	35	636	18	772	772.14	7438
Level 1	8302	373	36	689	20	772	772.14	10966
Ground	-	-	59	-	-	-	-	59

55,713 k

Figure 11: Seismic Load Diagram

Spot Checks

Slab and Beam Moment Checks

The 10" slab of the northwest corner of level 2 was checked for moment capacity. Direct Design Method was used to calculate the moments in the column and middle strips of the slab and edge beams. While moment capacity was not directly calculated, the steel area required to reinforce the slab was calculated and compared to the area of steel provided in the plans. The area of steel provided is sufficient for all critical sections except in the column strip at the face of the first interior column in both directions where the area of steel is insufficient by 1.16 in one direction and 0.37 in in the other direction. When looking closer at the calculations it appears the designers used a different method to determine critical moments based on the area of steel they provided at the two sections where negative moments exist. They provided nearly identical amounts of steel in the exterior negative moment section as in the interior negative moment section. The frame along line F contains (10) #8 bars at each of these critical sections and the frame along line 4 contains (8) #8 bars in the exterior section and (9) #8 bars in the interior section. The direct design method assumes 70% of the total static moment is resisted by the interior support while 30 percent of the total static moment is resisted by the exterior support. A more advanced method such as the Equivalent Frame Method might provide a more exact analysis confirming the current design.

The edge beams along the same portion of slab were also checked for moment capacity. The design moments for the beams were determined in the same process as the design moments of the slab. The area of steel provided in the plans, between 2 in^2 and 3 in^2 , is far greater than the area required based on gravity loading which is between 1 in^2 and 1.5 in^2 . This is expected as the beams are part of the lateral system and are required to resist much larger moments due to wind and seismic loads. See <u>Appendix E</u> for hand calculations.

Slab and Beam Shear Checks

The same slab as analyzed for moment capacity was analyzed for shear capacity, specifically punching shear at an internal column F-4. The slabs resistance to punching shear is quite adequate. The punching shear strength of the slab at 223 kips is reasonably larger than the nominal shear force on the slab at 132 kips. See <u>Appendix E</u> for hand calculations.

For the shear check of a beam, the shear capacity of an edge beam along the west wall was calculated, from E-5 to E-6. The beam schedule calls for #4 ties at 12" on center. Given the

reinforcing and the size of the beam at 21x28, the shear capacity is a little over 79 kips. This is adequate as the shear force d away from the support is just 56 kips. See <u>Appendix E</u> for hand calculations.

Column Axial Checks

Columns were checked in two places, the 4^{th} floor and the ground floor at F-4. The column size is continuous through the height of the building at 22"x22", however the compressive strength of the columns change at the 3^{rd} floor from 7000 psi to 5000 psi. Analyzed only for pure axial strength, the capacity of the column on the 4^{th} floor is just over 2000 kips and the capacity on the ground floor is just over 2800 kips. The axial loads are 433 kips and 886 kips respectively. As expected, the column is quite adequate to carry the load given there is no applied moment for the gravity loading. Under lateral load from wind and earthquake, the column will be stressed much more likely approaching its design strength. See <u>Appendix E</u> for hand calculations.

Elements Needing Future Checks

At this time, only gravity spot checks have been performed. Elements that still need checks include, but are not limited to, precast wall panels for lateral wind, roof structure for wind uplift, foundation walls for lateral soil pressure, foundation piers for axial and moment capacity, and entry canopies for wind and snow loading. However, future technical assignments will acknowledge these issues such as Technical Report 3 where a full lateral analysis of wind and lateral seismic loads will be conducted.

<u>Appendix</u>

Appendix A: Building Plans

Ground Level

Level 1

Level 2 (Level 3 similar)

Level 4-7 (all similar)

Roof Level

Page | **30**

Appendix B: Snow Analysis

Appendix C: Wind Analysis

Appendix D: Seismic Analysis

DETERMINE SERMIC GROWN MOTEN VALUES FROM USGS FATHQUAX HAZARDS PROGRAM: ZIP: 21237 $\Rightarrow S_1 = 0.051 \text{ g}$ SITE CLASS C TAGLE 11.4-1 $\Rightarrow F_0 = 1.2$ TAGLE 11.4-2 $\Rightarrow F_0 = 1.7$ $\Rightarrow S_0 = 1.2 (0.176) = 0.2112$ $\Rightarrow S_0 = 2.5 (0.210) = 0.2112$ $\Rightarrow S_0 = 2.5 (0.210) = 0.2112$ $\Rightarrow S_0 = 2.5 (0.210) = 0.0567$ $\Rightarrow S_0 = 2.5 (0.210) = 0.0578$ DETERMINE SDC $\Rightarrow S_0 = 2.5 (0.210) = 0.0578$ $\Rightarrow S_0 = 2.5 (0.210) = 0.0578$ DETERMINE SDC $\Rightarrow S_0 = 2.5 (0.210) = 0.0578$ $\Rightarrow S_0 = 2.5 (0.210) = 0.2112$ $\Rightarrow S_0 = 2.5 $		W GROWN MOTORN WALL	EC	
SITE CLASS C TABLE 11.4-1 - Fa=1.7 TABLE 11.4-2 - Fr, = 1.7 TABLE 11.4-2 - Fr, = 1.7 SMS = Fa Sg = 1.2(0.176) = 0.2117 SMS = Fa Sg = 1.2(0.176) = 0.2117 SMS = Fa Sg = 1.7(0.051) = 0.0667 SMS = 2 SMS/3 = 2(0.212)/3 = 0.1408 SG = 2 SMS/3 = 2(0.212)/3 = 0.1408 SG = 2 SMS/3 = 2(0.212)/3 = 0.0578 DETERMINE SDC OCCUPANCY CATEGORY IV SCC = A TS = Sm/Sm = 0.0578/1408 = 0.4105 0.8TS = 0.5284				7
SITE CLASS C TABLE 11.4-1 \rightarrow Fa=1.2 TABLE 11.4-2 \rightarrow Fv=1.7 SMS= FaSi = 1.2(0.176) = 0.2112 SM1= FvSi = 1.7(0.051) = 0.0867 Sps = 2 SMs/3 = 2(0.2112)/3 = 0.1408 SGi = 2 SMs/3 = 2(0.0867)/3 = 0.0578 DETERMINE SDC OCCUPANCY CATEGORY IV \rightarrow SDC = A $T_S = S_{11}/S_{12} = 0.0578/1408 = 0.4105$ 0.8Ts = 0.8284 TABLE 12.8.2 \rightarrow C ₁ = 0.016 ×= 0.9 Tagle 11.6-1 \rightarrow A TABLE 11.6-1 \rightarrow A TABLE 11.6-1 \rightarrow A SDC = A 3.5 Ts = 2.5(0.4105) = 1.4368 \rightarrow T= 1.0548 \rightarrow Equivalent Lateral Force TABLE 12.2-1 \rightarrow R=3 I = 1.5 \rightarrow TABLE 11.5-1 TABLE 12.2-1 \rightarrow R=3 I = 1.5 \rightarrow TABLE 11.5-1 TABLE 12.2-1 \rightarrow R=3 I = 1.5 \rightarrow TABLE 11.5-1 TABLE 12.3-1 \rightarrow C ₀ = 1.7 C ₀ Ta = 1.7(1.0548) = 1.743 = T C ₅ = Sps = 0.1408 = 0.0704 T _c = 8.7 T= 1.203 C ₅ 4 0.0578 = 0.06718 = 0.016 [Table 1.75 \rightarrow 0.5T = 1.49	FROM USGS	EVELH GANK HASTERNS A		
SITE CLASS C TABLE 11.4-1 -> F ₀ = 1.7 TABLE 11.4-2 -> F ₀ = 1.7 $S_{MB} = F_0 S_0 = 1.2(0.176) = 0.2112$ $S_{M1} = F_0 S_0 = 1.7(0.051) = 0.0867$ $S_{D0} = 2.5_{M3}/3 = 2.(0.212)/3 = 0.1408$ $S_{C_1} = 2.5_{M3}/3 = 2.(0.2867)/8 = 0.0578$ DETERMINE SDC $OCCUPANCY CAMEGORY IV$ $C_1 = S_{D1}/S_{D2} = 0.0578/1,1108 = 0.4105$ $O.8T_0 = 0.2284$ $O.8T_0 = 0.0284$ $O.8T_0 = 0.0284$ $O.8T_0 = 0.0284$ $O.8T_0 = 0.016(0.05)^{0.0} = 1.0548 > 0.87_0 = 0.3284$ $O.8T_0 = 0.016(0.05)^{0.0} = 1.0548 > 0.87_0 = 0.3284$ $O.8T_0 = 0.016(0.05)^{0.0} = 1.0548 > 0.87_0 = 0.3284$ $O.8T_0 = 0.016(0.05)^{0.0} = 1.0548 > 0.87_0 = 0.3284$ $O.8T_0 = 0.016(0.05)^{0.0} = 1.0548 > 0.057_0 = 1.0548$ $O.8T_0 = 0.016(0.05)^{0.0} = 1.0548 > 0.057_0 = 1.0548$ $O.8T_0 = 0.016(0.05)^{0.0} = 1.0548 > 0.057_0 = 1.0548$ $O.8T_0 = 0.016(0.05)^{0.0} = 1.0548 > 0.057_0 = 1.0548$ $O.8T_0 = 0.016(0.05)^{0.0} = 1.0548$ $O.$				
TABLE $11.4-1 \rightarrow F_{A}=1.2$ $TABLE 11.4-2 \rightarrow F_{V}=1.7$ $SMS = F_{A}S_{S} = 1.2(0.176) = 0.2112$ $SM1 = F_{V}S_{1} = 1.7(0.051) = 0.0867$ $S_{DS} = 2.5M_{A}/3 = 2(0.212)/3 = 0.1408$ $S_{O_{1}} = 2.5M_{A}/3 = 2(0.0867)/3 = 0.0578$ DETERMINE SDC $CCUPANCY CATEGORY IV$ $CCUPANCY CATEGORY I$			5,	-0.0519
TABLE 11.4-2 \rightarrow F. = 1.7 SMS = FaS_ = 1.2(0.176) = 0.2112 SM1 = FuS_ = 1.7(0.051) = 0.0867 SDS = 2.5M_3/3 = 2(0.212)/3 = 0.1408 SOS_ = 2.5M_3/3 = 2(0.0867)/3 = 0.0578 DETERMINE SDC COCUPANCY CMEGORY IV SDC = A T_S = SD_1/S_S = 0.0578_1408 = 0.4105 0.8T_S = 0.3284	SITE CLASS			
TABLE 11.4-2 \rightarrow F. = 1.7 SMS = FaS_ = 1.2(0.176) = 0.2112 SM1 = FuS_ = 1.7(0.051) = 0.0867 SDS = 2.5M_3/3 = 2(0.212)/3 = 0.1408 SOS_ = 2.5M_3/3 = 2(0.0867)/3 = 0.0578 DETERMINE SDC COCUPANCY CMEGORY IV SDC = A T_S = SD_1/S_S = 0.0578_1408 = 0.4105 0.8T_S = 0.3284				
$SMS = F_{0}S_{S} = 1.2(0.176) = 0.2112$ $SMI = F_{0}S_{I} = 1.7(0.051) = 0.0867$ $S_{0} = 2.5M_{0}/3 = 2.(0.0867)/3 = 0.0578$ $S_{0} = 2.5M_{0}/3 = 2.(0.0867)/3 = 0.0578$ DETERMINE SDC $CCUPANICY CATEGORY IV$ $SDC = A$ $T_{S} = S_{0}/S_{0} = 0.0578/_{0.1408} = 0.4105$ $0.8T_{S} = 0.3284 \qquad TABLE 12.8.2 \rightarrow C_{F} = 0.016 \qquad X^{F} = 0.9$ $T_{A} = C_{f} \cdot h_{A}^{X} \qquad h_{A} = 106 = 1.28.2 \rightarrow C_{F} = 0.016 \qquad X^{F} = 0.3284$ $TABLE 11.6-1-7 \qquad A$ $TABLE 11.6-1-7 \qquad A$ $TABLE 11.6-2-7 \qquad A$ $SDC = A$ $3.5T_{S} = 2.5(0.4105) = 1.4368 yT_{F} = 1.0548 \qquad \Rightarrow EQUIVALENT LATERAL FORCE$ $TABLE 12.2-1 \qquad R = 3 \qquad I = 1.5 \rightarrow TABLE 11.5-1$ $TABLE 12.2-1 \qquad R = 3 \qquad I = 1.5 \rightarrow TABLE 11.5-1$ $TABLE 12.2-1 \qquad C_{0} = 1.7 \qquad C_{0}T_{0} = 1.7(1.0548) = 1.793 = T$ $C_{S} = \frac{S_{0}}{(3)} = \frac{0.1408}{(3)} = 0.0704 \qquad T_{C} = 8.7 T = 1.509 \qquad C_{S} \leq \frac{0.0578}{(3)} = 0.016$ $V = C_{S} W = 0.016(55713) = \frac{391.4 K}{3}$ $V = C_{S} W = 0.016(55713) = \frac{391.4 K}{3}$ $V = C_{S} W = 0.016(55713) = \frac{391.4 K}{3}$	TABLE 11.4-1	$\Rightarrow F_a = 1.2$		
$S_{M1} = F_V S_{1} = 1.7(0.05)^{\frac{1}{2}} 0.0867$ $S_{D8} = 2.5 M_{3}/3 = 2(0.2102)/3 = 0.1408$ $S_{C1} = 2.5 M_{3}/3 = 2(0.0867)/3 = 0.0578$ DETERMINE SDC $000PANCY CANEGORY IV$ $V SDC = A$ $T_{S} = S_{D1}/S_{D8} = 0.0578/0.1408 = 0.4105$ $0.8T_{S} = 0.3284 \qquad TABLE 12.8.2 \rightarrow C_{4} = 0.016 \times 0.9$ $T_{A} = C_{4} h_{A} \qquad h_{A} = 106 \stackrel{f}{=} \qquad T_{A} = 0.016 (105)^{0.4} = 1.054.8 \times 0.8T_{5} = 0.3264$ $V TABLE 11.6-1 \rightarrow A$ $TABLE 11.6-2 \rightarrow A$ $SDC = A$ $3.5T_{S} = 2.5(0.4105)^{-1} 1.436.8 \times T_{5} = 1.054.8 \rightarrow EQUIVALENT LATERAL FORCE$ $TABLE 12.2-1 \rightarrow R = 3$ $I = 1.5 \rightarrow TABLE 11.5-1$ $TABLE 12.8-1 \rightarrow C_{6} = 1.7 \qquad C_{6}T_{6} = 1.7(1.054.8) = 1.793 = T$ $C_{S} = S_{DS} = 0.1408 = 0.0704 \qquad T_{6} = 8.775 + 0.575 = 0.016$ $V = C_{S} W = 0.016(55713) = 891.4 K$ $W = 0.75 + 0.57 = 1.49$	TABLE 11.4-2 .	→ F _v = 1.7		
$S_{M1} = F_V S_{1} = 1.7(0.05)^{\frac{1}{2}} 0.0867$ $S_{D8} = 2.5 M_{3}/3 = 2(0.2102)/3 = 0.1408$ $S_{C1} = 2.5 M_{3}/3 = 2(0.0867)/3 = 0.0578$ DETERMINE SDC $000PANCY CANEGORY IV$ $V SDC = A$ $T_{S} = S_{D1}/S_{D8} = 0.0578/0.1408 = 0.4105$ $0.8T_{S} = 0.3284 \qquad TABLE 12.8.2 \rightarrow C_{4} = 0.016 \times 0.9$ $T_{A} = C_{4} h_{A} \qquad h_{A} = 106 \stackrel{f}{=} \qquad T_{A} = 0.016 (105)^{0.4} = 1.054.8 \times 0.8T_{5} = 0.3264$ $V TABLE 11.6-1 \rightarrow A$ $TABLE 11.6-2 \rightarrow A$ $SDC = A$ $3.5T_{S} = 2.5(0.4105)^{-1} 1.436.8 \times T_{5} = 1.054.8 \rightarrow EQUIVALENT LATERAL FORCE$ $TABLE 12.2-1 \rightarrow R = 3$ $I = 1.5 \rightarrow TABLE 11.5-1$ $TABLE 12.8-1 \rightarrow C_{6} = 1.7 \qquad C_{6}T_{6} = 1.7(1.054.8) = 1.793 = T$ $C_{S} = S_{DS} = 0.1408 = 0.0704 \qquad T_{6} = 8.775 + 0.575 = 0.016$ $V = C_{S} W = 0.016(55713) = 891.4 K$ $W = 0.75 + 0.57 = 1.49$				
$S_{M1} = F_V S_{1} = 1.7(0.05)^{\frac{1}{2}} 0.0867$ $S_{D8} = 2.5 M_{3}/3 = 2(0.2102)/3 = 0.1408$ $S_{C1} = 2.5 M_{3}/3 = 2(0.0867)/3 = 0.0578$ DETERMINE SDC $000PANCY CANEGORY IV$ $V SDC = A$ $T_{S} = S_{D1}/S_{D8} = 0.0578/0.1408 = 0.4105$ $0.8T_{S} = 0.3284 \qquad TABLE 12.8.2 \rightarrow C_{4} = 0.016 \times 0.9$ $T_{A} = C_{4} h_{A} \qquad h_{A} = 106 \stackrel{f}{=} \qquad T_{A} = 0.016 (105)^{0.4} = 1.054.8 \times 0.8T_{5} = 0.3264$ $V TABLE 11.6-1 \rightarrow A$ $TABLE 11.6-2 \rightarrow A$ $SDC = A$ $3.5T_{S} = 2.5(0.4105)^{-1} 1.436.8 \times T_{5} = 1.054.8 \rightarrow EQUIVALENT LATERAL FORCE$ $TABLE 12.2-1 \rightarrow R = 3$ $I = 1.5 \rightarrow TABLE 11.5-1$ $TABLE 12.8-1 \rightarrow C_{6} = 1.7 \qquad C_{6}T_{6} = 1.7(1.054.8) = 1.793 = T$ $C_{S} = S_{DS} = 0.1408 = 0.0704 \qquad T_{6} = 8.775 + 0.575 = 0.016$ $V = C_{S} W = 0.016(55713) = 891.4 K$ $W = 0.75 + 0.57 = 1.49$	SMS = Fo Se	= 1,2(0.176) = 0.2112		
Sps = $2 \text{ SMs}/3 = 2(0.2112)/3 = 0.1408$ Sq. = $2 \text{ SMs}/3 = 2(0.0867)/3 = 0.0578$ DETERMINE SDC $00000000000000000000000000000000000$	Swife Fus	= 1.7(0.051)= 0.0867		
DETERMINE SDC $CCUPANCY CATEGORY IV$ $SDC = A$ $T_S = S_{P_1}/S_{D_S} : 0.0578/0.1408 : 0.4105$ $0.8T_S = 0.3284 \qquad TABLE 12.8.2 \rightarrow C_F = 0.016 \qquad \times = 0.9$ $T_A = C_F h_A^{X} \qquad h_A = 106 = T_A = 0.016 (105)^{0.9} = 1.0548 > 0.8T_S = 0.3284$ $TABLE 11.6-1 \rightarrow A$ $TABLE 11.6-2 \rightarrow A$ $SDC = A$ $3.5T_S = 2.5(0.4105)^{-1} 1.4368 > T_S = 1.0548 \rightarrow EQUIVALENT LATERAL FORCE$ $TABLE 12.2-1 \rightarrow R = 3$ $I = 1.5 \rightarrow TABLE 11.5-1$ $TABLE 12.8-1 \rightarrow C_0 = 1.7$ $C_0T_A = 1.7(1.0548) = 1.7793 = T$ $C_S = \frac{S_{PS}}{(\frac{N}{3})} = \frac{0.1408}{(\frac{N}{3}.5)} = 0.0704$ $T_L = 8.7 T_S = 1.202 C_S \leq \frac{0.0578}{(\frac{N}{3})} = 0.016$ $V = C_S M = 0.016 (55713) = \frac{891.4}{8}$ $K = 0.75 + 0.3T = 1.49$	3/11 1021			
DETERMINE SDC $CCUPANCY CATEGORY IV$ $SDC = A$ $T_S = S_{P_1}/S_{D_S} : 0.0578/0.1408 : 0.4105$ $0.8T_S = 0.3284 \qquad TABLE 12.8.2 \rightarrow C_F = 0.016 \qquad \times = 0.9$ $T_A = C_F h_A^{X} \qquad h_A = 106 = T_A = 0.016 (105)^{0.9} = 1.0548 > 0.8T_S = 0.3284$ $TABLE 11.6-1 \rightarrow A$ $TABLE 11.6-2 \rightarrow A$ $SDC = A$ $3.5T_S = 2.5(0.4105)^{-1} 1.4368 > T_S = 1.0548 \rightarrow EQUIVALENT LATERAL FORCE$ $TABLE 12.2-1 \rightarrow R = 3$ $I = 1.5 \rightarrow TABLE 11.5-1$ $TABLE 12.8-1 \rightarrow C_0 = 1.7$ $C_0T_A = 1.7(1.0548) = 1.7793 = T$ $C_S = \frac{S_{PS}}{(\frac{N}{3})} = \frac{0.1408}{(\frac{N}{3}.5)} = 0.0704$ $T_L = 8.7 T_S = 1.202 C_S \leq \frac{0.0578}{(\frac{N}{3})} = 0.016$ $V = C_S M = 0.016 (55713) = \frac{891.4}{8}$ $K = 0.75 + 0.3T = 1.49$	0 = 7 6	12 = 2(0,2112) 12 = 0	1408	
DETERMINE SDC $CCUPANCY CATEGORY TV$ $SDC = A$ $T_S = S_{D_1}/S_{D_S} : 0.0578/0.1408 : 0.4105$ $0.8T_S = 0.3284$ $TARLE 12.8.2 \rightarrow C_4 = 0.016 $				
OCCUPANCY CATEGORY IV $\Rightarrow \text{ SDC} = A$ $T_s = \frac{S_{P1}}{S_{P6}} = 0.0578 \frac{1}{0.1408} = 0.4105$ $0.8T_s = 0.3284$ $TAPLE 12.8.2 \Rightarrow C_s = 0.016 \times 0.99$ $T_a = C_s + h^x$ $h_n = 106 = 10.6 = 10.0016 \times 0.016 \times 0.0016 $	50,= 63	1/3 2(0,0867)/3 - 0	,0570	
OCCUPANCY CATEGORY IV $\Rightarrow \text{ SDC} = A$ $T_s = \frac{S_{P1}}{S_{P6}} = 0.0578 \frac{1}{0.1408} = 0.4105$ $0.8T_s = 0.3284$ $TAPLE 12.8.2 \Rightarrow C_s = 0.016 \times 0.99$ $T_a = C_s + h^x$ $h_n = 106 = 10.6 = 10.0016 \times 0.016 \times 0.0016 $				
$T_{S} = S_{D1}/S_{D_{S}} = 0.0578_{0.1408} = 0.4105$ $0.8T_{S} = 0.3284 \qquad TABLE 12.8.2 \rightarrow C_{T} = 0.016 \times = 0.9$ $T_{a} = C_{T} + h^{x} \qquad h_{n} = 106 \stackrel{F}{=} \qquad T_{a} = 0.016 (105)^{0.9} = 1.0548 > 0.8T_{S} = 0.32844$ $TAGLE 11.6-1 \rightarrow A \qquad \qquad TABLE 11.6-2 \rightarrow A \qquad SDC = A$ $3.5T_{S} = 2.5(0.4105)^{-1} \cdot 1.4368 > T_{T} = 1.0548 \rightarrow EQUIVALENT LATERAL FORCE$ $TABLE 12.2-1 \rightarrow R = 3 \qquad I = 1.5 \rightarrow TABLE 11.5-1$ $TABLE 12.8-1 \rightarrow C_{0} = 1.7 \qquad C_{0}T_{0} = 1.7(1.0548) = 1.793 = T$ $C_{S} = \frac{S_{DS}}{(31.5)} = \frac{0.1408}{(31.5)} = 0.0704 \qquad T_{L} = 8.7 T = 1.809 C_{S} \leq \frac{0.0578}{1.793} = 0.016$ $V = C_{S}W = 0.016(55713) = \frac{891.4}{1.49}$ $W = 0.75 + 0.5T = 1.49$	DETERMINE SDC			
$T_{S} = S_{D1}/S_{D_{S}} = 0.0578_{0.1408} = 0.4105$ $0.8T_{S} = 0.3284 \qquad TABLE 12.8.2 \rightarrow C_{T} = 0.016 \times = 0.9$ $T_{a} = C_{T} + h^{x} \qquad h_{n} = 106 \stackrel{F}{=} \qquad T_{a} = 0.016 (105)^{0.9} = 1.0548 > 0.8T_{S} = 0.32844$ $TAGLE 11.6-1 \rightarrow A \qquad \qquad TABLE 11.6-2 \rightarrow A \qquad SDC = A$ $3.5T_{S} = 2.5(0.4105)^{-1} \cdot 1.4368 > T_{T} = 1.0548 \rightarrow EQUIVALENT LATERAL FORCE$ $TABLE 12.2-1 \rightarrow R = 3 \qquad I = 1.5 \rightarrow TABLE 11.5-1$ $TABLE 12.8-1 \rightarrow C_{0} = 1.7 \qquad C_{0}T_{0} = 1.7(1.0548) = 1.793 = T$ $C_{S} = \frac{S_{DS}}{(31.5)} = \frac{0.1408}{(31.5)} = 0.0704 \qquad T_{L} = 8.7 T = 1.809 C_{S} \leq \frac{0.0578}{1.793} = 0.016$ $V = C_{S}W = 0.016(55713) = \frac{891.4}{1.49}$ $W = 0.75 + 0.5T = 1.49$				
$T_{S} = S_{P1}/S_{D_{0}} = 0.0578_{0.1408} = 0.4105$ $0.8T_{S} = 0.3284$ $T_{ABLE} = 12.8.2 \rightarrow C_{+} = 0.016 \times 0.048$ $T_{A} = C_{+} h_{A}^{\times}$ $h_{A} = 106 \stackrel{=}{=} T_{a} = 0.016 (105)^{0.9} = 1.054.8 \times 0.8T_{S} = 0.3254$ $C_{+} = T_{ABLE} = 11.6-1 \rightarrow A$ $TABLE = 11.6-2 \rightarrow A$ $SDC = A$ $3.5T_{S} = 2.5(0.4105)^{-1} \cdot 1.4368 \times T = 1.0548 \rightarrow EQUIVALENT LATERAL FORCE$ $TABLE = 12.2-1 \rightarrow R = 3$ $T_{ABLE} = 12.3-1$ $T_{ABLE} = 13.3-1$ T_{ABLE	OCCUPANCY CAT	EGOSY IV		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SDC = A		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tg = Sp. /s =	0.0578/ : 0.4105		
$T_{a} = C_{+} h_{n}^{\times}$ $h_{n} = 106 fa$ $T_{a} = 0.016 (105)^{\circ, 9} = 1.054.8 > 0.87_{s} = 0.32844$ \hookrightarrow TABLE 11.6-1 \rightleftharpoons 11. TABLE 11.6-1 \Longrightarrow A \hookrightarrow A \longrightarrow	TS S	0,1408		
$T_{a} = C_{+} h_{n}^{\times}$ $h_{n} = 106 fa$ $T_{a} = 0.016 (105)^{\circ, 9} = 1.054.8 > 0.87_{s} = 0.32844$ \hookrightarrow TABLE 11.6-1 \rightleftharpoons 11. TABLE 11.6-1 \Longrightarrow A \hookrightarrow A \longrightarrow	0.8T = 0.3	284 TABLE 12.8.2	-> C = 0.016 >	x = 0,9
TABLE 11.6-1 \Rightarrow A TABLE 11.6-1 \Rightarrow A SDC = A 3.5 T _S = 2.5(0.4105) $\stackrel{?}{=}$ 1.4 368 $\stackrel{?}{=}$ T.0548 $\stackrel{?}{\Rightarrow}$ EQUIVALENT LATERAL FORCE TABLE 12.2-1 $\stackrel{?}{\Rightarrow}$ R = 3 TABLE 12.8-1 $\stackrel{?}{\Rightarrow}$ C ₀ = 1.7 C ₀ T _a = 1.7(1.0548) $\stackrel{?}{=}$ 1.743 $\stackrel{?}{=}$ T.743 $\stackrel{?}{$				
TABLE 11.6-1 \Rightarrow A TABLE 11.6-1 \Rightarrow A SDC = A 3.5 T _S = 2.5(0.4105) $\stackrel{?}{=}$ 1.4 368 $\stackrel{?}{=}$ T.0548 $\stackrel{?}{\Rightarrow}$ EQUIVALENT LATERAL FORCE TABLE 12.2-1 $\stackrel{?}{\Rightarrow}$ R = 3 TABLE 12.8-1 $\stackrel{?}{\Rightarrow}$ C ₀ = 1.7 C ₀ T _a = 1.7(1.0548) $\stackrel{?}{=}$ 1.743 $\stackrel{?}{=}$ T.743 $\stackrel{?}{$	T = C + h x	ha= 106 FA T= 0.4	016 (105)09 = 1.0548	>0.87, =0.3254
TABLE 11.6-1 \rightarrow A TABLE 11.6-2 \rightarrow A SDC = A 3.5 T _s = 2.5(0.4105) = 1.4368 > T = 1.0548 \rightarrow EQUIVALENT LATERAL FORCE TABLE 12.2-1 \rightarrow R = 3 I = 1.5 \rightarrow TABLE 11.5-1 TABLE 12.8-1 \rightarrow C ₀ = 1.7 C ₀ T _a = 1.7(1.0548) = 1.793 = T C _s = Sps = 0.1408 = 0.0704 T _L = 8 7 T = 1.808 C _s \leftarrow 0.0578 = 0.016 1.793 ($\stackrel{?}{>}_{1.5}$) $\stackrel{?}{\sim}$ $\stackrel{?}{\sim}$ C _s = 0.0 V = C _s W = 0.016(55713) = 891.4 K $\stackrel{?}{\sim}$ $\stackrel{?}{\sim}$ $\stackrel{?}{\sim}$ 1.49				LA TABLE 11.6-1 \$ 11.
TABLE $11.6-2 \rightarrow A$ SDC = A 3.5 T _S = 2.5(0.4105) = 1.4368 > T = 1.0548 \rightarrow EQUIVALENT LATERAL FORCE TABLE 12.2-1 \rightarrow R = 3		-> A		
$3.5T_{S} = 2.5(0.1105)^{2} 1.4368 > T_{S} = 1.0548 $	TARLE 116-1			
TABLE 12.2-1 \rightarrow R=3 I=1.5 \rightarrow TABLE 11.5-1 TABLE 12.8-1 \rightarrow C ₀ = 1.7 C ₀ T _a = 1.7(1.0548) = 1.793 = T $C_{S} = \frac{S_{PS}}{(\frac{R}{I})} = \frac{0.1408}{(\frac{3}{1.5})} = \frac{0.0704}{(\frac{3}{1.5})} = \frac{1.793}{(\frac{3}{1.5})} = 1.793$		-> A SDC=	Λ	
TABLE 12.2-1 \rightarrow R=3 I=1.5 \rightarrow TABLE 11.5-1 TABLE 12.8-1 \rightarrow C ₀ = 1.7 C ₀ T _a = 1.7(1.0548) = 1.793 = T $C_{S} = \frac{S_{PS}}{(\frac{R}{I})} = \frac{0.1408}{(\frac{3}{1.5})} = \frac{0.0704}{(\frac{3}{1.5})} = \frac{1.793}{(\frac{3}{1.5})} = 1.793$		A SDC=	A	
TABLE 12.8-1 -> $C_0 = 1.7$ $C_0T_0 = 1.7(1.0548) = 1.793 = T$ $C_5 = S_{PS} = 0.1408 = 0.0704$ $T_{L} = 8.7 T = 1.808$ $C_{S} \leq 0.0578 = 0.016$ $\frac{R}{T}$ $\frac{3}{1.5}$ $\frac{3}{1.5}$ $C_{S} = 0.016$ $V = C_{S}W = 0.016(55713) = 891.4 K$ $V = 0.75 + 0.3T = 1.49$	TABLE 11.6:			WEST LOOP TOOK
TABLE 12.8-1 -> $C_0 = 1.7$ $C_0T_0 = 1.7(1.0548) = 1.793 = T$ $C_5 = S_{PS} = 0.1408 = 0.0704$ $T_{L} = 8.7 T = 1.808$ $C_{S} \leq 0.0578 = 0.016$ $\frac{R}{T}$ $\frac{3}{1.5}$ $\frac{3}{1.5}$ $C_{S} = 0.016$ $V = C_{S}W = 0.016(55713) = 891.4 K$ $V = 0.75 + 0.3T = 1.49$	TABLE 11.6:			ALENT LATERAL FORCE
$C_{S} = \frac{S_{PS}}{\left(\frac{R}{I}\right)} = \frac{0.1408}{\left(\frac{3}{1.5}\right)} = \frac{0.0704}{\left(\frac{3}{1.5}\right)} = \frac{1.209}{\left(\frac{3}{1.5}\right)} = \frac{0.0578}{\left(\frac{3}{1.5}\right)} = \frac{0.0578}{\left(\frac{3}{1.5}\right)} = \frac{0.016}{\left(\frac{55713}{1.5}\right)} = \frac{891.4^{K}}{\left(\frac{3}{1.5}\right)}$ $K = 0.75 + 0.3T = 1.49$	7.5 Ts = 3.5	5 (2014.0) = (2014.0)	1.0548 -> EQUIV	
$C_{S} = \frac{S_{PS}}{\left(\frac{R}{I}\right)} = \frac{0.1408}{\left(\frac{3}{1.5}\right)} = \frac{0.0704}{\left(\frac{3}{1.5}\right)} = \frac{1.209}{\left(\frac{3}{1.5}\right)} = \frac{0.0578}{\left(\frac{3}{1.5}\right)} = \frac{0.0578}{\left(\frac{3}{1.5}\right)} = \frac{0.016}{\left(\frac{55713}{1.5}\right)} = \frac{891.4^{K}}{\left(\frac{3}{1.5}\right)}$ $K = 0.75 + 0.3T = 1.49$	7.5 Ts = 3.5	5 (2014.0) = (2014.0)	1.0548 -> EQUIV	
$V = C_S W = 0.016(55713) = 891.4 K$ $W = 0.75 + 0.5T = 1.49$	TABLE 11.6:	S(0.4105) = 1.4368 > T=	1.0548 -> EQUIV	1
$V = C_S W = 0.016(55713) = 891.4 K$ $W = 0.75 + 0.5T = 1.49$	TABLE 11.6:	S(0.4105) = 1.4368 > T=	1.0548 -> EQUIV	1
$V = C_S W = 0.016(55713) = 891.4 K$ $W = 0.75 + 0.5T = 1.49$	TABLE 11.6: 3.5 Ts = 2.5 TABLE 12.2-1 TABLE 12.8-1	$S(0.4105)^{2} = 1.4368 > T_{0}^{2}$ $\rightarrow R = 3$ $\rightarrow C_{0} = 1.7$	1.0548 \rightarrow EQUIV I = 1.5 \rightarrow TABLE 11.5- CuTa = 1.7(1.0548) =	1,793 = T
$V = C_S W = 0.016(55713) = 891.4 K$ $W = 0.75 + 0.5T = 1.49$	TABLE 11.6: 3.5 Ts = 2.5 TABLE 12.2-1 TABLE 12.8-1	$S(0.4105)^{2} = 1.4368 > T_{0}^{2}$ $\rightarrow R = 3$ $\rightarrow C_{0} = 1.7$	1.0548 \rightarrow EQUIV I = 1.5 \rightarrow TABLE 11.5- CuTa = 1.7(1.0548) =	1,793 = T
V=C5W=0.016(55713)= 891.4 K	TABLE 11.6: 3.5 Ts = 2.5 TABLE 12.2-1 TABLE 12.8-1	$S(0.4105)^{2} = 1.4368 > T_{0}^{2}$ $\rightarrow R = 3$ $\rightarrow C_{0} = 1.7$	1.0548 \rightarrow EQUIV I = 1.5 \rightarrow TABLE 11.5- CuTa = 1.7(1.0548) =	1,793 = T
K=0.75+0.3T=1.49	TABLE 11.6: 3.5 Ts = 2.5 TABLE 12.2-1 TABLE 12.8-1	$S(0.4105)^{2} = 1.4368 > T_{0}^{2}$ $\rightarrow R = 3$ $\rightarrow C_{0} = 1.7$	1.0548 \rightarrow EQUIV I = 1.5 \rightarrow TABLE 11.5- CuTa = 1.7(1.0548) =	1,793 = T
	TABLE 11.6: 3.5 Ts = 3.5 TABLE 12.2-1 TABLE 12.8-1 $C_S = S_{DS} = \frac{R}{I}$	$S(0.4105)^{2}$ 1.4368 > T_{2}^{2} $\Rightarrow R = 3$ $\Rightarrow C_{0} = 1.7$ 0.1408 $\binom{3}{1.5}$	1.0548 \rightarrow EQUIV I = 1.5 \rightarrow TABLE 11.5- CuTa = 1.7(1.0548) =	1,793 = T
	TABLE 11.6: 3.5 Ts = 3.5 TABLE 12.2-1 TABLE 12.8-1 $C_S = S_{DS} = \frac{R}{I}$	$S(0.4105)^{2}$ 1.4368 > T_{2}^{2} $\Rightarrow R = 3$ $\Rightarrow C_{0} = 1.7$ 0.1408 $\binom{3}{1.5}$	1.0548 \rightarrow EQUIV I = 1.5 \rightarrow TABLE 11.5- CuTa = 1.7(1.0548) =	1,793 = T
E - W K // - C = COO IN CHECK	TABLE 11.6: 3.5 $T_S = 3.5$ TABLE 12.2-1 TABLE 12.8-1 $C_S = \frac{S_{DS}}{(R)} = \frac{R}{1}$ $V = C_S W = 0.0$	$R = 3$ $R = 3$ 0.1408 $(3/1.5)$ 891.4^{K}	1.0548 \rightarrow EQUIV I = 1.5 \rightarrow TABLE 11.5- CuTa = 1.7(1.0548) =	1,793 = T
E - 11 1 1/ - CTE COO-IN CUENTS	TABLE 11.6: 3.5 $T_S = 3.5$ TABLE 12.2-1 TABLE 12.8-1 $C_S = \frac{S_{DS}}{(R)} = \frac{R}{1}$ $V = C_S W = 0.0$	$R = 3$ $R = 3$ 0.1408 $(3/1.5)$ 891.4^{K}	1.0548 \rightarrow EQUIV I = 1.5 \rightarrow TABLE 11.5- CuTa = 1.7(1.0548) =	1,793 = T
LX - MX VX A DEE DAKEND DHELLO	TABLE 11.6: 3.5 $T_S = 3.5$ TABLE 12.2-1 TABLE 12.8-1 $C_S = \frac{S_{DS}}{(R)} = \frac{R}{1}$ $V = C_S W = 0.0$ $K = 0.75 + 0.5$	$S(0.4105)^{2}$ 1.4368 > T_{0}^{2} $\Rightarrow R = 3$ $\Rightarrow C_{0}^{2} = 1.7$ $O.1408$ $(3/1.5)$ $S(0.4105)^{2}$ $S($	1.0548 \rightarrow EQUIV I = 1.5 \rightarrow TABLE 11.5- $C_{0}T_{a} = 1.7(1.0548) =$ $T_{L} = 8 \times 7 = 1.809$	1,793 = T

Weight of Concrete Floor Slabs							
Level	Area (ft²)	Slab Thickness (in)	Weight (pcf)	Weight (k)			
Roof	4,789	10	145	579			
Penthouse	35,373	12	145	5129			
Level 6	35,373	10	145	4274			
Level 5	35,373	10	145	4274			
Level 4	35,373	10	145	4274			
Level 3	38,096	10	145	4603			
Level 2	38,607	10	145	4665			
Level 1	68,710	10	145	8302			
Ground	-	-		-			

Weight of Conc. on Metal Deck Floor Slabs							
Level	Area (ft²)	Weight (psf)	Weight (k)				
Roof	20,680	63	1303				
Penthouse	-	-	-				
Level 6	-	-	-				
Level 5	-	-	-				
Level 4	2,886	63	182				
Level 3	3,548	63	224				
Level 2	-	-	-				
Level 1	-	-	-				
Ground	-	-	-				

Weight of C	oncrete Be	ams			
Level	Totel Length of 10"x28" (ft)	Totel Length of 12"x28" (ft)	Totel Length of 21"x28" (ft)	Totel Length of 22"x24" (ft)	Totel Length of 8"x20" (ft)
Roof	0	0	0	252.5	0
Penthouse	18.25	90.17	1076.5	0	0
Level 6	18.25	90.17	1076.5	0	18.25
Level 5	74.75	33.67	1076.5	0	18.25
Level 4	74.75	33.67	1076.5	0	18.25
Level 3	74.75	33.67	1195.1	0	18.25
Level 2	18.25	90.17	1213.3	0	0
Level 1	0	97.18	758.5	0	18.25
Ground	-	-	-	-	

Totel Length of 22"x20" (ft)	Totel Length of 24"x20" (ft)	Totel Length of 26"x20" (ft)	∑ Area (ft³) (minus slab depth)	Weight (pcf)	Weight (k)
0	0	0	540	145	78
43.83	28.25	254.25	3111	145	451
28.25	0	254.25	3496	145	507
28.25	0	254.25	3482	145	505
0	28.25	254.25	3486	145	505
0	28.25	254.25	3797	145	551
0	0	206	3715	145	539
194.5	0	72.33	2575	145	373
_	-	-	-	-	-

Weight of S	teel Beam	S							
Level	Totel Length of W12x1 4 (ft)	Totel Length of W12x1 6 (ft)	Totel Length of W14x2 2 (ft)	Totel Length of W16x2 6 (ft)	Totel Length of W16x3 1 (ft)	Totel Length of W18x3 5 (ft)	Totel Length of W16x4 0 (ft)	Totel Length of W18x4 0 (ft)	Totel Length of W21x4 4 (ft)
Roof	891	571	2488	15	158	-	60	75	90
Penthous									
е	-	-	-	-	-	-	-	-	-
Level 6	-	-	-	-	-	-	-	-	-
Level 5	-	-	-	-	1	-	-	-	-
Level 4	-	-	870	-	1	150	-	-	-
Level 3	-	195	120	185	1	-	-	-	20
Level 2	-	-	-	-	ı	-	-	-	-
Level 1	-	-	-	-	-	-	-	-	-
Ground	-	-	-	-	-	-	-	-	-

Totel Length of W18x5 0 (ft)	Totel Length of W24x5 5 (ft)	Totel Length of W21x5 7 (ft)	Totel Length of W21x6 2 (ft)	Totel Length of W24x6 2 (ft)	Totel Length of W18x6 5 (ft)	Totel Length of W21x7 3 (ft)	Totel Length of W30x9 0 (ft)	Totel Length of W18x9 7 (ft)	Totel Length of W24x1 03 (ft)	Weig ht (k)
180	-	30	225	60	-	180	60	-	-	138
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	45	-	29
185	20	-	-	-	35	-	-	-	40	28
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	1	-

Weight of C	oncrete	Columns							
Level	# of 21x21	# of 22x22	# of 30x12	# of 12x20	# of 21x27	Σ Area (ft²)	Height (ft)	Weight (pcf)	Weight (k)
Roof	-	-	1	-	1	-	-	-	1
Penthouse	12	0	4	0	0	46.75	16.67	145	9
Level 6	43	29	4	0	0	239.16	12.00	145	35
Level 5	43	29	4	0	0	239.16	11.17	145	32
Level 4	43	29	4	0	0	239.16	11.17	145	32
Level 3	43	29	4	0	0	239.16	11.17	145	32
Level 2	50	29	4	0	0	260.60	11.17	145	35
Level 1	50	29	4	4	0	267.26	11.17	145	36
Ground	62	47	4	4	1	368.45	13.17	145	59

Weight of St	eel Columns			
Level	# of W10x49	Σ W (k/ft)	Height (ft)	Weight (k)
Roof	-	-	-	-
Penthouse	68	3.33	17.50	58
Level 6	68	3.33	13.00	43
Level 5	-	-	-	-
Level 4	-	1	-	-
Level 3	-	ı	-	-
Level 2	-	-	-	-
Level 1	-	-	-	-
Ground	-	-	-	-

Weight of Fa	açade					
Level	Perimeter (ft)	Tributary Height (ft)	55% of Area (ft²)	Thickness (in)	Wight (pcf)	Weight (k)
Roof	802	8.75	7,018	7	30	123
Penthouse	802	15.25	6,727	7	80	314
Level 6	1140	12.5	7,838	7	145	663
Level 5	1140	12	7,524	7	145	636
Level 4	1140	12	7,524	7	145	636
Level 3	1140	12	7,524	7	145	636
Level 2	1140	12	7,524	7	145	636
Level 1	1140	13	8,151	7	145	689
Ground	-		-	-		-

Weight of C	urtain Wall				
Level	Perimeter (ft)	Tributary Height (ft)	45% of Area (ft ²)	Wight (psf)	Weight (k)
Roof	1	ı	1	-	-
Penthouse	802	12.5	4,511	3	14
Level 6	1140	12	6,156	3	18
Level 5	1140	12	6,156	3	18
Level 4	1140	12	6,156	3	18
Level 3	1140	12	6,156	3	18
Level 2	1140	12	6,156	3	18
Level 1	1140	13	6,669	3	20
Ground	-		-		-

Superimpos	ed DL		
Level	Area (ft²)	Superimposed DL (psf)	Weight (k)
Roof	1	-	-
Penthouse	25,469	20	509
Level 6	35,373	20	707
Level 5	35,373	20	707
Level 4	35,373	20	707
Level 3	38,096	20	762
Level 2	38,607	20	772
Level 1	38,607	20	772
Ground	-	-	-

Weight of P	artitions		
Level	Area (ft²)	Partition Load (psf)	Weight (k)
Roof	-	-	-
Penthouse	1	-	-
Level 6	35,373	20	707
Level 5	35,373	20	707
Level 4	35,373	20	707
Level 3	38,096	20	762
Level 2	38,607	20	772
Level 1	38,607	20	772
Ground	-	-	-

Appendix E: Spot Checks

ITEM	DESCRIPTION		DAMP A	FRAME B	FRAMEC	FRAMED
				180"	270"	180"
	TOTAL WIDTH (COLUMN STRIPM)			90"	135"	90"
2.	MIDDLE STRIP WIL			90"	112.5"	90"
4.	TORSIONAL CONST.		55,495	55,495	55,495	55,495
5.	Is = 1+3/12		1003 = 22,500	15,000	22,500	15,000
6.	B = 5215		1.23	1,85	1.23	1.25
7.	Pt - 2/5 x = Fb/Is		0	3.41	0	3,41
8.	12/		1,0	1.0	1.0	1.0
9.	~, l3/l		0	3,41	0	3,41
	Men % TO CS		88%	82%	88%	88%
10.			60%		60%	
11,	M+ % to CS		75%	75%		75%
12.	Min % TO CS		13/0	75%	75%	75%
FRAME A:		Mex+	M+	Mint		
I KAME A.		-178,4	297.		-	
	TOTAL MOMENT	88	60			
		-157	178,			
	MOMENT CS	-21.4	119	- 04.1-104.		
	MOMENT MS	21,1	117	04.1 104.		
FRAME B		M	M+	Min		
I PEATINE S	TOTAL MOMENT	Mex -119	198			
	% TO CS	82	75			
	MOMENT CS	-97.6				
	% TO CS BEAM	85	85			
	MOMENT CS BEAM	-83.0	126			
		-14.6	22.			
	MOMENT US SLAB	-21,4	49.			
	COMPLOI MA	21,-1		64.		
FRAMEC		Mex	M+	Mint		
I-MILE C	TOTAL MOMENT	-178,4	297.			
	% TO CS	88	60			
	MOMENTES	-157	178.			
	MOMENT MS	-21,4	118			
	TO MON THIS	411				
FRAME D:		Mex	M*	Mins		
I KAME D.	TOTAL MOMENT	-119.0	198.	114		
	% TO CS	82	75			
	MOMENT CS	- 97.6	148.			
			85			
	% TO CS BEAM	85	83	0.5		

FRAME A	COLUMN STRIPS	LAB		
ITEM	DESCRIPTION	Mext	M [†]	Mint
1.	M. ('K)	-157	178.4	-312.3
2.	CSWIDTH, 6	135"	135"	135"
3.	EFFECTIVE DEPTH	8.75"	8,88"	8.75"
4,	Ma= My= Myg	-174.4	198.2	- 3 47.6
5.	R = M/(12000)/682	202.5	223.4	402.9
6.	P	0.0035	0.0038	0.0070
7.	Asreq = pbd	4.13	4.56	8.27
8.	Asmin = 0.0018 bt	2,43	2,43	2.43
9.	Asprov	6.32	4.73	7.11
		6.32>4.13	4.73>4.56	7.11 < 8.27 X
FRAME A	MIDDLE STRIP S	LAB		
ITEM	DESCRIPTION	Mers	MT	Mant
1.	Mo (14)	-21.4	119	-104.1
2.	MS WIDTH, b	112,5"	112.5"	112,5"
33,	EFFECTIVE DEPTH	8.94"	8.94	8. 94"
4.	Mn= My6= My6,9	-23.8	132.2	-115.7
5.	R = My (2000)/632	31.7	176.5	154.4
6.		0.0065	0.0030	0.0026
7,	Aster = pbd	0.54	3.03	2.65
8.	Asmin: 0,001864	2.025	2.025	2.025
9,	Asprov	2,48	3,10	2.79
				2.79 > 2.65 /
Asprev	$M_{ext} = \frac{112.5}{112.5+90}$	= 7.78=8 #s	#5)	2.48 in ²
Asprov	$M^{+} = \left(\frac{112.5}{12''o.c}\right) =$	9,375 = 10	10(0,31) = 3.	10 1/12
	$M_{2n+} = \left(\frac{112.5}{112.5 - 90}\right)(16)$		9(031) = 2.79	2

FRAME B	COLUMN STRIP S	LAB		
ITEM	DESCRIPTION	Mext	M+	Mina
1.	Mo (W)	-14:6	22.3	-31,2
2.	CS WOTH, 6 - BEAM	69"	69"	69"
3.	EFFECTIVE DEPTH	8,81	8,94"	8.81
4,	Mr = My6 = My69	-16,2	24.8	-34.7
5,	R= Mn (12000)/632	36.3	53.9	77.7
		0.0006	0.0009	0.0013
7.	P	6.38	0.57	0.81
8.	Asrey = Abd Asmin = 0.00186+	1.242	1.24	1.24
9,		4.80	1,86	4,80
	Asprav =	1,80	1,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		406 > 211	1 10/210	4/ 4.8071.24/
		7100 71.290	1,8671,2	407127
		4.44		
FRAME B	COLUMN STRIP BE		M+	Mina
ITEM	DESCRIPTION	Mex+ -83.0	126.4	-177.0
1.	Mu(in)	21"	21"	21"
2.	BEAM WIDTH			26,69
3.	EFFECTIVE DEPTH	26.69	26.69	
4.	Ma= Myo = Myoa	-92.2	140.4	-196,7
5,	R= M, (12000)/682	74.0	112.7	157.8
6.	P	0.0013	0.0019	0.0027
7.	Asreq = pbd	0.71	1.08	1.51
8,	Asmin = 0,00186+	1.06	1.06	0.39
9.	Asprov	3,0	2.0	3.0
		3071.06 V	2,071.0	8/ 307151/
	MIDDLE STRIP SLA		107	
ITEM	PESCRIPTION	Mem	M ⁺	Min
1.	Mu (w)	-21,4	49.6	-69,4
2.	MS WISTH, b	90"	909	90"
3.	EPPECTIVE DEPTH	8,94"	8,94"	8.94"
Ч,	Mn = Mya = Mya	-23.8	55.1	-77.1
5.	R= M0 (15000)/P95	39.7	91.9	(28.6
6.	P	0.0006	0.003	0.0026
7.	Asrega pod	0.48	2,41	2.09
8,	Asmin = 0.0018 bt	1.62	1,62	1.62
9.	Asprov	1.86	2,48	2.17
		1.8671.62/		41/ 2.1772.09/
Asprev	Mert = (14-8)(0.3	D = 1.86 in	2	
Asprov	M+ = (90") = 7	7.5 = 8	(0.31) = 2,4	8 in2
	Mint = (16-9) (0.3)			

FRAME C	COLUMN STRIP SL	AB			
ITEM	DESCRIPTION	Mexa	M+	Mine	
١.	Mu (IL)	-157	178.4	-312,3	
2.	CSWIDTH, b	135"	135"	(35"	
3.	EFFECTIVE DEPTH	8.75"	8.88"	8.75"	
4.	Ma= Mu/a= Mu/0A	-174.4	198.2	-347.0	
5.	R= M, (12000)/682	202.5	223.4	402.9	
6.	P	0,0035	0.0038	0,0070	
7.	Asrey = Abd	4.13	4.56	8,27	
8.	Amin = 0,0018 6+	2.43	2,43	2,43	
9,	YS Drav.	7.9	5.61	7.9	
		7.975.67	5.6174	56√ 7,9 < 8.27 ×	
FRAME C	MIDDLE STRIP SL	AB			
ITEM	DESCRIPTION	Mext	M+	Mine	
1.	M. (14)	-21,4	119.0	-104.1	
2.	MS WIDTH, b	112.5"	112,5"	112.5*	
3.	EFFECTIVE DEPTH	8.94"	8,94"	8,94	
4.	Mo = My/a = My/0.9	-23.8	132.2	-115.7	
5.	R= Ma (12000 3/682	31.7	176.5	154,4	
6.		0.0006	0.603	0.0026	
7.	Asrey = pbd	0.54	303	2,65	
8,	A3min= 0.0018 bil	2.025	2.025	2.025	
9.	As prov	2.17	3,10	2.79 in ²	
		2.17>2.0	25/ 3.10)	303/ 2.7972,65/	
Asprov	$M_{\text{Cx4}}^{-} = \left(\frac{112.5}{112.5+40}\right)(12) =$	6,67= 7	7(0,31)	= 2.17 h ²	
Aspen	M+ = (112,5) = 9	.375 = 10	10 (0.31)	= 3,10 ih 2	
Asprov	$M^{-} = \left(\frac{112.5}{112.5 + 90}\right)^{(16)}$	= 8,89 = 9	9(0.3	1) = 2.79 in 2	
FRAME	E D SAME AS	FRAME B	W.P.T.	MOMENTS AND REINFORCING	OK
Λ				DR MIN ON BOTH FRAME A A	A.A.

SLAB	AND BEAM SHEAR CHECKS 1
PUNC	HING SHEAR COLUMN F-4
	$d \approx 8.9^{\circ}$ $d_{2} = 4.45^{\circ}$ $b_{0} = 4(22 + 2(4.45)) = 123.6.7$ $A_{4115} = (30_{2} + 15_{2})(30_{2} + 15_{2}) - (22 + 2(4.45))^{2} = 499.6 - 54^{2}$ $V_{0} = \omega_{0} A_{4115} = 0.265(499.6) = 132.4 \text{ K}$
	Vc = 4JFC bod GOVERNS BY INSPECTION = 45000 (123.6) (8.9) = 311* OVc = 0.75 (311) = 223 × > 132.44 OK
BEA	M SHEAR ES TO EG $\omega = 0.265 \frac{1}{42} \left(14.1344 + \frac{28}{12}54\right) = 4.36 \frac{1}{42}$
	When = (21)(28-10) (145 16) = 0.38 4/4
	$\omega_0 = 4.36 + 0.38 = 4.74 \text{ W} + V_0 = \omega_0 l = 4.74 (28.25) = 66.96^k$ $V_0 \otimes d = 66.96 - 4.74 (26.69)/12 = 56.42^k$
	V _S = #4 @ 12" = 0.20 (60) (26.69)/12 = 26.69 ×
	Vc = 2,5000 (21)(26.69)/1000 = 79.27 K
	ΦVn= 0.75 79.27 + 26.69 = 79.47 × 7 56,42 × ΟΚΛ

22" F'C: ROCC PEN LEVE LEV WD SEL LIVE	27H FLOOR: A+ ×22" W/(8) #9 5000 PSI F: $\omega_D = 80$ PSF THOUSE: $\omega_D = 165$ F LG: $\omega_D = 141$ PSF ELS: $\omega_D = 141$ PSF = 80 + 165 + 141 + = WEIGHT = (22)(22)	$\omega_{L} = 0$ ω_{L	M HALLWAY HO + 80) /2. PSF 80 PSF 80 PSF		PARTITION + 20 PSF.	vs = 80 PSF
FOU 22" F'Z: ROC PEN LEVE WD SEL PO =	27H FLOOR: A+ ×22" W/(8) #9 5000 PSI F: $\omega_D = 80$ PSF THOUSE: $\omega_D = 165$ F LG: $\omega_D = 141$ PSF ELS: $\omega_D = 141$ PSF = 80 + 165 + 141 + = WEIGHT = (22)(22)	$\omega_{L} = 0$ ω_{L	M HALLWAY HO + 80) /2. PSF 80 PSF 80 PSF		PARTITION + 20 PSF.	25 80 ASF
FOU 22" F'Z: ROC PEN LEVE WD SEL PO =	27H FLOOR: A+ ×22" W/(8) #9 5000 PSI F: $\omega_D = 80$ PSF THOUSE: $\omega_D = 165$ F LG: $\omega_D = 141$ PSF ELS: $\omega_D = 141$ PSF = 80 + 165 + 141 + = WEIGHT = (22)(22)	$\omega_{L} = 0$ ω_{L	M HALLWAY HO + 80) /2. PSF 80 PSF 80 PSF		PARTITION + 20 PSF	25 80 ASF
22" F'C: ROCC PEN LEVE LEV WD SEL LIVE	$\times 22^{\circ}$ W/ (8) #9 $\div 5000$ PSI F: $\omega_{D} = 80$ PSF THOUSE: $\omega_{D} = 165$ PSF LG: $\omega_{D} = 141$ PSF ELS: $\omega_{D} = 141$ PSF = 80 + 165 + 141 + 165 = 80 + 165 + 141 + 165	$\omega_{L} = 0$ ω_{L	M HALLWAY HO + 80) /2. PSF 80 PSF 80 PSF		PARTITION + 20 PSF	= 80 ASF
PEN LEVE WD SEL	F: $\omega_D = 80 \text{ PSF}$ THOUSE: $\omega_D = 165\text{ F}$ LG: $\omega_D = 141 \text{ PSF}$ ELS: $\omega_D = 141 \text{ PSF}$ $= 80 + 165 + 141 + 141 + 141$	$\omega_{L} = 0$ $\omega_{L} = 30$ $PSF \qquad \omega_{L} = 0$ $\omega_{L} = 0$ $\omega_{L} = 0$ $141 = 527 \text{ Ps}$ $32 = 0$ $141 = 527 \text{ Ps}$ $33 = 0$ $141 = 527 \text{ Ps}$ $34 = 0$ $141 = 527 \text{ Ps}$	PSF 80 PSF 80 PSF 80 PSF	= 60 P.ST	PARTITION + 20 PSF.	= 80 ASF
PEN LEVE WD SEL	F: $\omega_D = 80 \text{ PSF}$ THOUSE: $\omega_D = 165\text{ F}$ LG: $\omega_D = 141 \text{ PSF}$ ELS: $\omega_D = 141 \text{ PSF}$ $= 80 + 165 + 141 + 141 + 141$	$\omega_{L} = 30$ PSF $\omega_{L} = \frac{1}{1}$	9 PSF 80 PSF 80 PSF	= 60 P.ST	+ 20 PSF	= 80 PSF
ROCC PEN LEVE LEV WD SEL LIVE	F: $\omega_D = 80 \text{ PSF}$ THOUSE: $\omega_D = 165 \text{ F}$ LG: $\omega_D = 141 \text{ PSF}$ ELS: $\omega_D = 141 \text{ PSF}$ = $80 + 165 + 141 +$ = $\omega_D = 165 + 141 +$	PSF $\omega_{L} = \omega_{L} = 0$ F $\omega_{L} = 0$ 141 = 527 Ps	80 PSF 80 PSF 80 PSF			
PEN LEVE WD SEL PD =	THOUSE: $\omega_D = 165$ F $L G: \omega_D = 141$ PSF $EL S: \omega_D = 141$ PSF = 80 + 165 + 141 + $= \omega_D = 141 +$ $= \omega_D = 141 +$ $= \omega_D = 141 +$ $= \omega_D = 141 +$	PSF $\omega_{L} = \omega_{L} = 0$ F $\omega_{L} = 0$ 141 = 527 Ps	80 PSF 80 PSF 80 PSF			
LEVE	$LG: \omega_D = 141 PSF$ $ELS: \omega_D = 141 PSF$ $= 80 + 165 + 141 $	$\omega_{L} = \frac{1}{5}$ $\omega_{L} = \frac{5}{5}$ $141 = 527 \text{ Ps}$ $\frac{3}{5} \left(12^{1} + 13\right)$	80 PSF			
LEV WO SEL Po =	= 80 + 165 + 141 + $= WEIGHT = (22)(22)$	$\omega_{L} = \{ 141 = 527 \text{ Ps} \}$ $(12^{1} + 13)$	80 PSF			
D SEL PD =	= 80 + 165 + 141 + = WEIGHT = (22)(22)	141 = 527 Ps				
SEL PD =	= WEIGHT = (223(22)	25 (12' + 13	SF S			
SEL PD =	= WEIGHT = (223(22)	25 (12' + 13				
PD=	144"/	S (12' + 13				
LIVE			+ 17.5) (1	45 16/43) =	20.7 K	
LIVE				1000		
LIVE	527(503) + 20.7=	285*				
	LOAD REDUCTION:		A_ = 503	3(4) = 20	12 54	
	-0 = (30+80+80+8	30)(503) =	136 ×			
P _U =	= 136 0.25 +	15 =	: 57 ^K =	PL:		
	1.2 Pp + 1.6 PL =	1.2 (285) +	1.6 (57)=	433 K		
Pu=	1.40 DOES NOT GO	OVERN				
PUR	S AXIAL STRENGT	н				
	P aseri A.	10-1	07/5000	100.02 = 0	2) + 0((0)
	Po= 0.85 Plc Ac+	1374 = 0	183 (3000)	LLXCL		
	10 - 2023					
	Po = 2023 k > 1	D - 433 K	OK.			

GROUND LEVEL! AND 503 FT/LEVEL
$\frac{R_{COM}}{22'' \times 22''} = \frac{W/(8) \pm 9}{W_{L}} = \frac{(HO + 86)}{2} = \frac{60 \text{ PSF}}{20} + \frac{20 \text{ PSF}}{20} = \frac{80 \text{ PSF}}{20} $
FI _C = 7000 PSI
ROOF: Wo = 80 PSF W_=30 PSF
PENTHOWE: WB=165 PSF WL= 80 PSF
LEVEL 6: WP = 141 PSF WE = 80 PSF
LEVEL 5: WD: 141 PSF WL= 80 PSF
LEVEL 4: WD = 141 PSF WL= 80 PSF
LEVEL 3: $\omega_D = 141 \text{ PSF}$ $\omega_L = 80 \text{ PSF}$
LEVEL 21 WD = 141 PSF W = 80 PSF
LEVEL 1: WD = (4) PSF WE = 80 PSF
WD = 80 + 165 + 141 + 141 + 141 + 141 + 141 = 1091 ASF
SELF WEIGHT = (22")(22") (12+12+12+12+12+13+17.5)(145 143) = 44.1
144 1/4
PD = 1091(503) + 441 = 5934
1000
LIVE LOAD REDUCTION: KL 4 Ag = 503(8) = 4024 F12
Lo= (30+80+80+80+80+80+80+80)(503) = 297 K
L= 297 0.25 + 15 = 109 k = PL
4(4024)
Pu= 1,2 Pp+ 1,6 Pp= 1,2 (593) + 1.6 (109) = 886 4
PUZ 1.4 PD DOES NOT GOVERN
PURE AXIAL STRENGTH
Po = 0.85 (7000)(22×22-8) + 8(60) = 2,833 k
Po= 2833 "> Po= 886 " OK/